| TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------|---------------------------------------------|---------------------------------------------|------|-----------------------------------------------------------------------------------------|----------------------|--------------| | Institutional Actions | | | | | | | | Restrictions | Land Use<br>Restrictions,<br>Fencing | Y | | | | | | Capping | | | | | | | | Asphalt/Concrete Cap | | N | | | | | | Multi-Layer Cover System | Clay/Soil,<br>RCRA-Type<br>Cap <sup>1</sup> | Y | | | | | | Fixation | | | | | | | | Solidification | Pozzolan/<br>Cement | $N^2$ | | Organics may interfere with effectiveness | | | | Stabilization | Polymerization | N | | Not effective for<br>chlorinated organic<br>carbons (COCs) at<br>concentrations at site | | | <sup>&</sup>lt;sup>1</sup> Note that the detailed analysis in some cases discusses capping generically, including revegetation and asphalt/concrete options, but in the end only specifically mentions the RCRA-type cap. <sup>&</sup>lt;sup>2</sup> Not specifically screened out, but does not show up as an alternative at the detailed stage. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |-------------------------------------------|----------------------------------------------|---------------------------------------------|------|----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------| | | | | | | | | | On-Site Containment | | | | | | | | Closure-In-Place/On-Site<br>Encapsulation | Encapsulation, <i>In Situ</i> Polymerization | N | | Not effective for COCs at concentrations at site | | | | Long-term On-Site Landfill | RCRA/Solid<br>Waste Landfills | N | | Long-term risk<br>minimized, but not<br>eliminated | Waste would need to be pre-treated due to regulations | Screened out<br>as a primary<br>remedial<br>option; still<br>considered as<br>a treatment<br>train<br>component | | Thermal Treatment | | | | | | | | On-Site Incineration | Rotary Kiln,<br>Fluidized Bed | Y | | | | | | Off-Site Incineration | Rotary Kiln,<br>Fluidized Bed | Y | | | | | | Pyrolysis | Pyrolytic<br>Incineration | N | | Not effective for COCs | | | | Vitrification | Vitrification ( <i>In Situ</i> ) | N | | Not effective due to shallow ground water | Not effective due to shallow ground water | | | | Plasma Fusion (Ex Situ) | | | | | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------|------|---------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------| | SHIRCO Infrared | Infrared<br>Thermal<br>Treatment | $N^3$ | | | | | | Biological Treatments | | | | | | | | In Situ Bioremediation | Bioremediation (In Situ) | N | | Not effective on high<br>concentrations of<br>contaminants/LNAPL<br>plume | Hydrogeological constraints | Screened out<br>as a primary<br>remedial<br>option; still<br>considered as<br>a treatment<br>train<br>component | | Ex situ Bioremediation | Solid Phase Ex Situ Bioremediation Treatment (with or without white rot fungus or composting) | Y | | | | | | Soil/Slurry Bioreactor | Slurry Phase Ex<br>Situ<br>Bioremediation<br>Treatment | Y | | | | | <sup>&</sup>lt;sup>3</sup> Not specifically screened out, but does not show up as an alternative at the detailed stage. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|--------------------------------------------|---------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------| | Chemical Treatments | | | | | | | | Dechlorination | Dechlorination | N | High costs | PAHs will remain after<br>treatment; during<br>treatment, highly-<br>chlorinated dioxins<br>may be converted to<br>more toxic, less<br>chlorinated dioxins | | | | Solvent extraction | Supercritical<br>Solvent<br>Extraction | Y | | | | | | Physical Treatments | | | | | | | | Soil Flushing | Soil Flushing | Y | | | | | | Soil Washing | Soil Washing<br>(with steam/ hot<br>water) | Y | | | | Treatment<br>train<br>secondary<br>component | | Aeration/soil venting | Vacuum Soil<br>Venting | N | | Not effective for COCs | | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | RCRA Landfill | Y | | | | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |----------------------------|-------------------------|---------------------------------------------|------|---------------|----------------------|--------------| | Off-Site Sanitary Landfill | Solid Waste<br>Landfill | Y | | | | | | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILI<br>TY | COST | |--------------------------|-------------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|--------------------------------------------------|--------------------------------| | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | Capping | | | | | | | | | | Multi-Layer Cover System | N | Interim, non-<br>permanent<br>remedy | | No reduction of volume or toxicity | | | | | | Thermal Treatment | | | | | | | | | | On-Site Incineration | N | Production of dioxins if not maintained properly | | | | | Public opposition | High<br>cost | | Off-Site Incineration | N | | | | | Risks involved in hauling wastes 1,800 miles to site | | High<br>cost | | Biological Treatment | | | | | | | | | | Ex situ Bioremediation | Y | | | | | | | | | Soil/Slurry Bioreactor | N | | | Contaminant<br>concentrations in<br>silty/clay<br>underflow (from<br>soil washing<br>step) may reduce<br>effectiveness | | | Potential problems<br>processing woody<br>debris | More<br>costly<br>than<br>LTUs | | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILI<br>TY | COST | |----------------------------|-------------------|--------------------------------------|-------------------------------------|--------------------------------------------------------------|--------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------| | | _ | | | | | | | | | Chemical Treatment | | | | | | | | | | Solvent extraction | N | | | Overall waste volume may increase due to effluent production | | | | High<br>cost | | Physical Treatment | | | | | | | | | | Soil Flushing | N | Might cause<br>spreading of<br>LNAPL | | | Uncertain long-term<br>effectiveness | | Soil heterogeneities and low hydraulic conductivity might limit efficiency; uncertain technical difficulties due to innovative status | | | Soil Washing | Y | | | | | | | | | Off-Site Options | | | | | | | | | | Off-Site RCRA Facility | $N^4$ | | | | | | | | | Off-Site Sanitary Landfill | $\mathbf{N}^1$ | | | | | | | | <sup>&</sup>lt;sup>4</sup> No reasons for final screen out given. Eliminated as components of treatment trains that were not selected. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------------|------------------------------------------------------------|---------------------------------------------|------|-----------------------------------|-------------------------------------------------------------------------------------------|--------------| | Institutional Actions | | | | | | | | Restrictions | Access/deed<br>Restrictions;<br>Ground Water<br>Monitoring | N | | Won't satisfy remedial objectives | | | | Capping | | | | | | | | Soil/Bentonite/Clay | Surface Cover | Y | | | | | | Multi-Layer Cover System | Surface<br>Capping | Y | | | | | | Fixation | | | | | | | | Solidification | Ex Situ S/S | N | | Not effective for dioxins | | | | Stabilization | Chemical<br>Fixation ( <i>In</i><br>Situ) | N | | | Non-conducive site<br>conditions (impermeable<br>soils, shallow depth to<br>ground water) | | | On-Site Containment | | | | | | | | Temporary On-Site Storage Pile | On-Site Soil<br>Isolation | Y | | | | | | Long-Term On-Site Landfill | On-Site Landfill | Y | | | | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|---------------------------------------------|---------------------------------------------|------|--------------------------------------|-------------------------------------------------------------------------------------------|--------------| | Thermal Treatment | | | | | | | | On-Site Incineration | On-Site<br>Incineration | Y | | | | | | Off-Site Incineration | Off-Site<br>Incineration | Y | | | | | | Vitrification | In Situ Vitrification and Plasma Reactor | N | | Not proven | Non-conducive site<br>conditions (impermeable<br>soils, shallow depth to<br>ground water) | | | Thermal Desorption | Thermal Desorption | N | | Not proven effective against dioxins | Requires post treatment of off gases | | | Biological Treatment | | | | | | | | In situ Bioremediation | Subsurface<br>Bioreclamation/<br>Composting | N | | Not proven effective against dioxins | Non-conducive site<br>conditions (impermeable<br>soils, shallow depth to<br>ground water) | | | Ex situ Bioremediation | Engineered<br>Land Treatment | N | | Not proven effective against dioxins | | | | Soil/Slurry Bioreactor | Bioslurry<br>Reactor | N | | Not proven effective against dioxins | | | | Chemical Treatment | | | | | | | | Dechlorination | Dechlorination | Y | | | | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|---------------------------|---------------------------------------------|------|---------------------------------------------------------------|----------------------------------------------------|--------------| | Solvent extraction | Solvent<br>Extraction | N | | | Only applicable for oil removal from sludges/soils | | | Physical Treatment | | | | | | | | Soil flushing | Soil Flushing | N | | | High clay/silt content not conducive | | | Soil Washing | Soil Washing | N | | | | No reason | | Aeration/Soil Venting | Soil Vapor<br>Extraction | N | | Only effective for VOCs, which are not a problem at this site | | | | Other | Continuous<br>Evaporation | N | | New technology<br>unproven | New technology<br>unproven | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | Off-Site<br>Landfill | Y | | | | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |---------------------------------|---------------------------------|---------------------------------------------|------|---------------------------------------|----------------------|--------------| | Off-Site Recycle/Reuse Facility | Recycle<br>Recovered<br>Product | N | | No useable product would be recovered | | | #### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: KOPPERS (Morrisville, NC) PHASE III ANALYSIS | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVEN<br>ESS | IMPLEMENTABILITY | COST | |-----------------------------------------------|-------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------| | | | | | | | | | | | Capping | | | | | | | | | | Soil/Bentonite/Clay Multi-Layer Cover System | N | Lowest overall protection Lowest overall protection | Potential issues<br>with LDRs<br>Potential issues<br>with LDRs | M reduced, but<br>not T and V<br>M reduced, but<br>not T and V | Only effective as cap remain intact Only effective as cap remain intact | | Long-term<br>maintenance and<br>ground-water<br>monitoring required | | | On-Site Containment | | | | | | | | | | Temporary On-Site Storage Pile | N | Less overall protection | | M reduced, but not T and V | | | | Unknown<br>future<br>treatment<br>costs | | Long-Term On-Site Landfill | N | Less overall protection | Potential issues<br>with LDRs | M reduced, but not T and V | | | Disposal issues | High cost,<br>especially<br>operation<br>and maint-<br>enance | | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVEN<br>ESS | IMPLEMENTABILITY | COST | |------------------------|-----------------------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|------| | | | | | | | | | | | Thermal Treatment | | | | | | | | | | On-Site Incineration | N | | | | | | Requires test burn;<br>completion of<br>treatment takes longest<br>time; community<br>opposition | | | Off-Site Incineration | Y | | | | | | | | | Chemical Treatment | | | | | | | | | | Dechlorination | Y <sup>5</sup><br>(Retained<br>secondary<br>option) | | | | | | Requires pilot studies;<br>completion of<br>treatment takes longest<br>time; most costly | | | Off-Site Options | | | | | | | | | | Off-Site RCRA Facility | N | Contaminants<br>are not<br>destroyed | Potential issues with LDRs | | | | Future LDRs may cause disposal problems | | <sup>&</sup>lt;sup>5</sup> Retained secondary option; requires pilot studies; longest to complete; most costly. ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LIBBY GROUND WATER (Lincoln County, MT) PHASE I/PHASE II ANALYSIS **Comments:** Key contaminants include VOCs and organics (PAHs). | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------------|--------------------|---------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| | | | | | | | | | Institutional Actions | | | | | | | | Restrictions | | Y | | | | | | Capping | | | | | | | | Multi-Layer Cover System | | Y | | | | | | Fixation | | | | | | | | Solidification | | N | | Limited applicability to organics; elevated pH has shown to increase mobility of some compounds such as pentachlorophenol | | | | On-Site Containment | | | | | | | | Temporary On-Site Storage Pile | Interim Storage | Y | | | | | | Long-Term On-Site Landfill | | Y | | | | | | Thermal Treatment | | | | | | | | Infrared Treatment | SHIRCO<br>Infrared | N | Higher than other thermal incineration technologies considered | | | | | On-Site Incineration | | Y | | | | | | Off-Site Incineration | | N | | | | | ## SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LIBBY GROUND WATER (Lincoln County, MT) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|---------|---------------------------------------------|------|---------------------------------------------------------------------------------------------|------------------------------------------------------|--------------| | | | | | | | | | Biological Treatment | | | | | | | | In Situ Bioremediation | | | | | | | | Ex Situ Bioremediation | | | | | | | | Soil/Slurry Bioreactor | | | | | | | | Chemical Treatment | | | | | | | | Dechlorination | | N | | Creates a hazardous<br>waste stream; will not<br>treat PAH compounds | Scale-up for site remediation still has to be tested | | | Physical Treatment | | | | | | | | Soil Washing | | N | | More effective for metals;<br>generates secondary<br>liquid waste when used<br>for organics | | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | Y | | | | | ## SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LIBBY GROUND WATER (Lincoln County, MT) PHASE III ANALYSIS Comments: Key contaminants include VOCs, organics (PAHs), and oil. | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABIL<br>ITY | COST | |--------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|----------------------------------|-------------------------------------------------------------------------|------------| | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | Capping | | | | | | | | | | Multi-Layer Cover System | Y | | | | | | | | | On-Site Containment | | | | | | | | | | Temporary On-Site Storage Pile | Y | | | | | | | | | Long-Term On-Site Landfill | N (no specific reason provided - not selected in conjunction with other technologies) | | | | | | | | | Thermal Treatment | | | | | | | | | | On-Site Incineration | N | | | No reduction in mobility of contaminants | | May cause air pollution problems | Requires<br>extensive<br>demonstration of<br>combustion<br>efficiencies | High costs | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LIBBY GROUND WATER (Lincoln County, MT) PHASE III ANALYSIS (Continued) | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABIL<br>ITY | COST | |------------------------|-------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------|----------------------------------|-------------| | | | | | | | | | | | Biological Treatment | | | | | | | | | | In Situ Bioremediation | Y | | | | | | | | | Ex Situ Bioremediation | Y | | | | | | | Lowest cost | | Soil/Slurry Bioreactor | Y | | | | | | | | | Off-Site Options | | | | | | | | | | Off-Site RCRA Facility | N | | | | | | Preference for on-site treatment | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LOUISIANA-PACIFIC (Butte County, CA) PHASE I/PHASE II ANALYSIS **Comments:** Key contaminants include VOCs (toluene), other organics (formaldehyde), and metals (arsenic, lead, zinc) The ROD documents an interim remedy and the need to collect additional data on arsenic and formaldehyde levels on and near the site. An interim remedial action eliminates the potential for exposure to site contaminants. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase<br>II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |-----------------------|------------------------------------|------------------------------------------------|--------------------------------------------------------------------|---------------|-------------------------------------|---------------------------------------------------------------| | Institutional Actions | | | | | | | | Restrictions | Deed<br>Well Permit<br>Site Access | Y | | | | | | Capping | | | | | | | | Unspecified | Gravel/Ballast | Y | | | | Retained as<br>technology for<br>soil<br>remediation | | Asphalt pavement | | N | Medium capital costs;<br>medium operation and<br>maintenance costs | | Not implementable in log deck areas | Retained as<br>part of<br>ground-water<br>remediation<br>plan | | Soil/Clay/Bentonite | | N | Very high operation and maintenance costs | | Not implementable in traffic areas | Retained as<br>part of<br>ground-water<br>remediation<br>plan | ## SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LOUISIANA-PACIFIC (Butte County, CA) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase<br>II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------|----------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------| | Multi-Layer Cover System | Synthetic<br>Membrane | Y | | | | Selected for<br>further<br>consideration<br>for the log<br>deck pond;<br>retained as<br>part of<br>ground-water<br>remediation<br>plan | | Fixation | | | | | | | | Solidification | Ex Situ with<br>Redisposal | N | Even though costs are not as high as soil washing, fixation may incur operation and maintenance costs for the application of surface sealants, because the long term effectiveness and permanence of contaminant mobility reduction is less certain | Long-term protectiveness is less certain than soil washing; with time and the stresses of log deck operation, the fixated mass will erode and may release particulate arsenic | | | ## SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LOUISIANA-PACIFIC (Butte County, CA) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase<br>II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |----------------------------|---------|------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| | On-Site Containment | | | | | | | | Long-Term On-Site Landfill | | N | | Removal would<br>expose contaminated<br>subsoil; not needed in<br>conjunction with soil<br>washing because this<br>treatment is permanent | | | | Physical Treatment | | | | | | | | Soil Flushing | | N | Higher costs than capping | Less effective than capping because of the depth of contaminated soil | | | | Soil Washing | | N | High capital costs | | | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | N | | The subsoil that would<br>be left exposed in the<br>excavation contains<br>equal or even greater<br>arsenic concentrations<br>than the excavated soil | | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: LOUISIANA-PACIFIC (Butte County, CA) PHASE III ANALYSIS Comments: Key contaminants include VOCs (toluene), other organics (formaldehyde), and metals (arsenic, lead, zinc). Technologies under final consideration were institutional controls and capping. | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM EFFECTIVENESS | SHORT-<br>TERM<br>EFFECTI<br>VENESS | IMPLEMENTABILI<br>TY | COST | |--------------------------|-------------------|-----------------------|-------------------------------------|-----------------------------------------------------|-------------------------|-------------------------------------|------------------------------------------------|-----------------------------------------| | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | Capping | | | | | | | | | | Unspecified | N | | | No reduction in toxicity, mobility, or volume | | | Interrupts continuing on-site operations | Higher costs than institutional actions | | Multi-Layer Cover System | N | | | No reduction in toxicity, mobility, or volume | | | Interrupts<br>continuing on-site<br>operations | Higher costs than institutional actions | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MACGILLIS & GIBBS/BELL LUMBER & POLE (Ramsey County, MN) PHASE I/PHASE II ANALYSIS **Comments:** Key contaminants include organics (dioxins, PAHs, PCP) and metals (chromium, arsenic). High cost and transportation (incineration, dechlorination) are reasons for screening out. The retained technologies focus on the waste PCP material in abandoned process tanks in the PCP process area and the LNAPL plume in the underlying aquifer. The FS does not address soil remediation. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |-------------------------------------------|-------------------------------------------------|---------------------------------------------|------------|---------------|-------------------------------------------------------------------------|------------------------------------------------------| | | | | | | | | | Institutional Actions | | | | | | | | Restrictions | Access | Y | | | | | | On-Site Containment | | | | | | | | Closure-In-Place/On-Site<br>Encapsulation | | Y | | | | | | Temporary On-Site Storage Pile | Oil and Sludge<br>Extracted from<br>LNAPL Plume | Y | | | | For<br>subsequent<br>treatment<br>and/or<br>disposal | | Thermal Treatment | | | | | | | | On-site Incineration | | N | High costs | | Requires installation of or | | | Off-Site Incineration | | N | High costs | | Requires transportation;<br>risks are associated with<br>transportation | | ## SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MACGILLIS & GIBBS/BELL LUMBER & POLE (Ramsey County, MN) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|--------------|---------------------------------------------|------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------| | Chemical Treatment | | | | | | | | Dechlorination | KPEG or APEG | N | High costs | The process is currently in the development stages | Requires installation of on-site dechlorination equipment or transportation to existing permitted dechlorination facility | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | Y | | | | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MACGILLIS & GIBBS/BELL LUMBER & POLE (Ramsey, MN) PHASE III ANALYSIS **Comments:** Key contaminants include organics (dioxins, PAHs, PCP) and metals (arsenic, chromium). The primary treatment method for wastewater and extracted ground water employs a fixed-film aerobic bioreactor. The rate of ground water extraction must be sufficient to enhance LNAPL extraction but should be minimized to the extent possible to control impacts on soil contamination. | aerobic bioreactor. The rate of ground v | vater extraction in | ust be sufficient to e | manee Ervi E extra | iction but should be in | minimized to the extent p | ossible to control impa | ets on son contamination. | | |-------------------------------------------|---------------------|------------------------|-------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------|---------------------------|----------| | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILITY | COS<br>T | | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | On-Site Containment | | | | | | | | | | Closure-In-Place/On-Site<br>Encapsulation | Y | | | | | | | | | Temporary On-Site Storage Pile | Y | | | | | | | | | Off-Site Options | | | | | | | | _ | | Off-Site RCRA Facility | Y | | | | | | | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MID-ATLANTIC WOOD PRESERVERS SITE (Anne Arundel County, MD) PHASE I/PHASE II ANALYSIS **Comments:** Key contaminants include chromium, copper, and arsenic. Criteria employed in the initial phase screening process are as follows: compatibility with waste characteristics, compatibility with site characteristics, protection of public health and environment, development status, and cost. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILITY | COMMENTS | |-----------------------|-------------------------------------------------------------------------------|---------------------------------------------|------|--------------------------------------------|------------------|----------| | | | | | | | | | Institutional Actions | | | | | | | | Restrictions | Deed Restrictions Monitoring (ground water, sediment, surface water, and air) | Y | | | | | | Capping | | | | | | | | Unspecified | Gravelling | Y | | | | | | Asphalt/Concrete | Paving | Y | | | | | | Soil/Bentonite/Clay | Clay or<br>Synthetic | Y | | | | | | Fixation | | | | | | | | Stabilization | Stabilization of<br>"Hot Spots" | Y | | | | | | Thermal Treatment | | | | | | | | On-site Incineration | (On-Site/Off-<br>Site Not<br>Specified) | N | | Not effective for heavy metal contaminants | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MID-ATLANTIC WOOD PRESERVERS SITE (Anne Arundel County, MD) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILITY | COMMENTS | |------------------------|-----------------------------------------|---------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------| | Off-site Incineration | (On-Site/Off-<br>Site Not<br>Specified) | N | | Not effective for heavy metal contaminants | | | | Vitrification | | N | High costs | Not a well-proven technology | Generally unavailable | | | Wet Air Oxidation | | N | | Not effective for heavy metal contaminants | | | | Biological Treatment | | | | | | | | In Situ Bioremediation | Landfarming,<br>Composting | N | | Not effective for heavy metal contaminants | | | | Off-Site Landfarming | | N | | Not effective for heavy metal contaminants | | | | Physical Treatment | | | | | | | | Soil Flushing | Solution Mining | N | | A strong acid would probably be required to leach the heavy metal contaminants from the soil; the acid could cause additional contaminant migration and increased risk to the environment | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MID-ATLANTIC WOOD PRESERVERS SITE (Anne Arundel County, MD) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILITY | COMMENTS | |----------------------------|--------------------|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------| | Soil Washing | Solvent<br>Washing | N | | A strong acid would probably be required to leach the heavy metal contaminants from the soil; however, because the metals are tightly absorbed to the soils, the process is unlikely to be efficient enough to reduce residual risks from soils to acceptable levels | | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | Y | | | | | | Off-Site Sanitary Landfill | | N | | | Sanitary landfills would not accept the site soils | Maryland Department of the Environment advised against disposing of soils in a sanitary landfill | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MID-ATLANTIC WOOD PRESERVERS (Anne Arundel County, MD) PHASE III ANALYSIS Comments: Key contaminants include chromium, copper, and arsenic. Alternative 3, which consists of a gravel cover in conjunction with ground-water remediation, was chosen. | Institutional Actions Restrictions Y Unspecified N Does not prevent the leaching of contaminants Capping Unspecified N Does not prevent the leaching of contaminants Fails to meet the ARAR for RCRA closure Fails to meet the ARAR for RCRA closure Routine maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Asphalt/Concrete Y Marars Routine Marars Routine Marars Gravel on yard generates dust; requires dust masks or dust suppression with water spray for workers Asphalt/Concrete Y | Comments: Key contaminants include | chromium, coppe | r, and arsenic. Alter | native 3, which consi | sts of a gravel cover 1 | n conjunction with groui | nd-water remediation, v | was chosen. | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|-------------------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------|------| | Restrictions Y Unspecified N Does not prevent the leaching of contaminants Fails to meet the ARAR for RCRA closure Fails to meet the ARAR for RCRA closure Routine maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Asphalt/Concrete Y Routine maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action | TECHNOLOGIES EVALUATED | | | WITH FEDERAL | TOXICITY,<br>MOBILITY, OR | | | | COST | | Restrictions Y Unspecified N Does not prevent the leaching of contaminants Fails to meet the ARAR for RCRA closure Fails to meet the ARAR for RCRA closure Routine maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Asphalt/Concrete Y Routine maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action | | | | | | | | | | | Unspecified N Does not prevent the leaching of contaminants N Does not prevent the leaching of contaminants Oravel on yard generates dust; required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Oravel on yard generates dust; requires dust masks or dust suppression with water spray for workers Asphalt/Concrete Y | <b>Institutional Actions</b> | | | | | | | | | | Unspecified N Does not prevent the leaching of contaminants N Does not prevent the leaching of contaminants Solution maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Asphalt/Concrete Y Fails to meet the ARAR for RCRA closure Fails to meet the ARAR for RCRA closure Routine maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Asphalt/Concrete Y | Restrictions | Y | | | | | | | | | ARAR for RCRA closure maintenance required to keep adequate grave cover; heaven and the leaching of contaminants are quipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action Asphalt/Concrete Prevent the leaching of colosure maintenance required to keep adequate grave requires dust masks or dust suppression with water spray for workers maintenance required to keep adequate gravel requires dust masks or dust suppression with water spray for workers May also be a suppression with water spray for may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel removal action | Capping | | | | | | | | | | | Unspecified | N | prevent the leaching of | ARAR for RCRA | | maintenance required to keep adequate gravel cover; heavy equipment traffic may cause upheaval of contaminated soils; rate of gravel addition may exceed the settling rate, creating a need for future gravel | generates dust;<br>requires dust<br>masks or dust<br>suppression with<br>water spray for | | | | Tixation | Asphalt/Concrete | Y | | | | | | | | | | Fixation | | | | | | | | | Stabilization # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: MID-ATLANTIC WOOD PRESERVERS (Anne Arundel County, MD) PHASE III ANALYSIS (Continued) | | | | ı | | 1 | 1 | | <del>- 1</del> | |------------------------|---------------------------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------| | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILI<br>TY | COST | | | | | | | | | | | | Off-Site Options | | | | | | | | | | Off-Site RCRA Facility | Y (in conjunction with stabilization) | | Discouraged by SARA statute | No reduction in toxicity or volume | | Slight risk to<br>community<br>because of dust<br>and transportation;<br>requires dust<br>masks or dust<br>suppression<br>techniques for<br>workers | Limited number of<br>RCRA landfills<br>available to<br>receive wastes | High<br>costs | Comments: Key contaminants include VOCs (benzene, toluene, xylenes), other organics (PAHs). Note additions under chemical treatments and biological treatments. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |-----------------------|------------------------------------------------------------|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------| | Institutional Actions | | | | | | | | Restrictions | Deed/<br>Ground-Water<br>Monitoring<br>Access Restrictions | Y<br>N | | Not effective for 5-mile stretch of river | Not implementable for 5-mile stretch of river; | | | | | | | | fencing seriously limits<br>the aesthetic appeal | | | Capping | | | | | | | | Asphalt/Concrete | | N | | Provides only marginal<br>benefits in terms of<br>achieving the clean-up<br>goals for soils; oxidation,<br>viscous deformation, and<br>chemical compatibility all<br>lessen the effectiveness of<br>asphalt caps; susceptible to<br>cracking | | | | Soil/Bentonite/Clay | Soil Cover | Y | | | | Different than clay | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------|--------------------|---------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| | Multi-Layer Cover System | Synthetic Membrane | N | | Provides only marginal benefits in terms of achieving the clean-up goals for soils; a large fraction of the contaminant mass is below the seasonal high water table, and the reduction in the amount of infiltration through the contaminated mass in the unsaturated zone will help little in achieving remedial action goals or affecting ground-water quality | | | | Fixation | | | | | | | | Solidification | Pollozonic agents | N | | Not appropriate to organic contaminants because contaminants are not chemically bound | | | | Stabilization | Sorption | N | | Not effective as a treatment or pretreatment mechanism | | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------------|--------------------------|---------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------| | On-Site Containment | | | | | | | | Temporary On-Site Storage Pile | | N | | | | Mentioned<br>briefly, don't<br>know where it<br>was screened<br>out | | Long-Term On-Site Landfill | On-Site RCRA<br>Landfill | N | | | | For treated sediments; mentioned briefly, but not specifically screened out | | Thermal Treatment | | | | | | | | On-Site Incineration | Mobile Incinerator | Y | | | | | | Off-Site Incineration | Rotary Kiln | Y | | | | | | Vitrification | | N | | Effectiveness could be hindered by absence of sandy soil in some portions, presence of high water table, and presence of debris and wood chips | Implementation would<br>require significant site<br>preparation, such as<br>lowering the water table<br>and removing debris and<br>wood | For sediment<br>above the<br>water table | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------| | Biological Treatment | | | | | | | | In Situ Bioremediation | | N | | Effectiveness will be hampered by non-homogeneity of the soil, and low permeability of some soil | Implementability could<br>be hindered by ARARs<br>restricting injection of<br>chemicals or wastewater<br>into the ground | | | Ex Situ Bioremediation | | Y | | | | | | Soil/Slurry Bioreactor | | Y | | | | | | Anaerobic Treatment | | N | | Aerobic biodegradation of PAHs is more effective than anaerobic processes | | | | Other | Facultative Processes (application of genetically modified microorganisms to waste to oxidize specific organic compounds) | N | | Aerobic biodegradation is more effective; not as effective as the stimulation of indigenous organisms, acclimated to the environment and having a propensity to consume the contaminants of concern | Still largely experimental | | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------|----------------------------------------------------------------------|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | Chemical Treatment | | | | | | | | Solvent Extraction | Solvent Extraction and<br>Supercritical Fluid<br>Extraction | N | | May not achieve<br>remediation goals; process<br>performance cannot be<br>reliably predicted and<br>performance is specific to<br>site and solvent | Requires soil to be finely ground and treated as an aqueous solution; the heterogenous character of the soil (gravel, clay, sand, debris) would make this very difficult to implement and control | | | Other | Steam Stripping, Soil<br>Vapor Extraction, and<br>Chemical Reduction | N | | Not effective for PAHs;<br>not applicable to metals<br>on-site | Not applicable to organic substances | | | Physical Treatment | | | | | | | | Soil Flushing | | N | | Effectiveness would be hampered by non-homogeneity of the soil, and low permeability of some soil | Implementability could<br>be hindered by ARARs<br>restricting the injection of<br>chemicals into the ground | | | Soil Washing | | Y | | | | On-site | | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |----------------------------|---------|---------------------------------------------|------|---------------|-----------------------------------------------------------------|---------------------------| | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | Y | | | | For biotreatment residues | | Off-Site Sanitary Landfill | | N | | | Obtaining a permit for this action would be impeded by the LDRs | | ### WOOD TREATER SITE NAME: MOSS AMERICA (Milwaukee, WI) PHASE III ANALYSIS **Comments:** Technology selected includes separation and dewatering of residues followed by redeposition on-site. In addition, oversize debris (e.g., railroad ties) will be disposed of off-site in a special waste landfill. All of the alternatives are expected to protect human health and the environment. The most significant differences are the cost, the time until implementation of the remedy is complete, and the amount of contaminated material that is treated as opposed to being contained. | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILI<br>TY | COST | |------------------------|-------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------| | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | Capping | | | | | | | | | | Soil/Bentonite/Clay | Y | | | | | | | | | Thermal Treatment | | | | | | | | | | On-Site Incineration | N | | | | | May cause a temporary decrease in air quality because of incinerator emissions; the incinerator could result in a steam plume and potential odors | | High<br>capital<br>costs | | Off-Site Incineration | N | | | | | | | High operation and mainteance costs | ## WOOD TREATER SITE NAME: MOSS AMERICA (Milwaukee, WI) PHASE III ANALYSIS (Continued) | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILI<br>TY | COST | |------------------------|-------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------| | | | | | | | | | | | Biological Treatment | | | | | | | | | | Ex Situ Bioremediation | N | | | | | May result in odors downwind of the site; potential for worker exposure from direct contact and dust inhalation could be greatest because workers would till the soil periodically for several years; longest time required to achieve remedial action goals | | | | Soil/Slurry Bioreactor | Y | | | | | | | | | Physical Treatment | | | | | | | | | | Soil Washing | Y | | | | | | | | | Off-Site Options | | | | | | | | | | Off-Site RCRA Facility | Y | | | | | | | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: NORTH CAVALCADE (Houston, TX) PHASE I/PHASE II ANALYSIS Comments: Key contaminants include PAHs, creosote, and PCP. Initial and detailed screening taken only from the FS. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |----------------------------|----------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|--------------| | Capping | | | | | | | | Soil/Clay/Bentonite | | N | | | Difficulty foreseen in<br>managing ground water<br>flow regime; physical site<br>constraints exist | | | Fixation | | | | | | | | Solidification | | N | Costs more than landfill | Possible interferences from oil | Future use of site restricted | | | On-Site Containment | | | | | | | | Long-Term On-Site Landfill | On-Site RCRA<br>Landfill | Y | | | | | | Thermal Treatment | | | | | | | | On-Site Incineration | Mobile Rotary<br>Kiln<br>Fluidized Bed | Y | | | | | | Off-Site Incineration | | N | Approximately six times<br>as much as on-site<br>incineration, in large<br>part because of<br>transportation and off-<br>site disposal costs | | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: NORTH CAVALCADE (Houston, TX) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|---------|---------------------------------------------|-------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | Biological Treatment | | | | | | | | In Situ Bioremediation | | Y | | | | | | Physical Treatment | | | | | | | | Soil Flushing | | Y | | | | | | Soil Washing | | N | | | Requires extensive<br>equipment; requires<br>vapor recovery and<br>treatment as well as<br>solvent recovery and<br>treatment of washing<br>fluid | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | N | Higher cost than on-site<br>RCRA landfill | | Uncertainty about the availability of a disposal facility able to accept CERCLA wastes at the time of remediation | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: NORTH CAVALCADE (Houston, TX) PHASE III ANALYSIS | <b>Comments:</b> Key contaminants include | omments: Key contaminants include PAHs, creosote, and PCP. | | | | | | | | | | | |-------------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--|--|--| | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVEN<br>ESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COST | | | | | | | | | | | | | | | | | | On-Site Containment | | | | | | | | | | | | | Long-Term On-Site Landfill | N | | | No reduction in toxicity or volume | Not a<br>permanent<br>remedy<br>because<br>wastes<br>remain on-<br>site | Risk of exposure<br>to contaminants | Site permits may be difficult to obtain | | | | | | Thermal Treatment | | | | | | | | | | | | | On-Site Incineration | N | | | | | | Utilities must be relocated; community opposes incineration | High costs | | | | | Biological Treatment | | | | | | | | | | | | | In Situ Bioremediation | Y | | | | | | | | | | | | Physical Treatment | | | | | | | | | | | | | Soil Flushing | N | | | | | | | An estimated \$.6 million more than in situ bioreclamation | | | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: PALMETTO WOOD PRESERVING (Dixiana, SC) PHASE I/PHASE II ANALYSIS Comments: Key contaminants include chromium and arsenic. Soil contamination exists to an average depth of six feet. Technologies were evaluated on the basis of implementability, operability, and reliability. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |-------------------------------------------|---------|---------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------| | Institutional Actions | | | | | | | | Restrictions | | Y | | | | | | Capping | | | | | | | | Multi-Layer Cover System | | Y | | | | | | Fixation | | | | | | | | Solidification | | N | | Ineffective for waste type;<br>not effective in<br>immobilizing organics;<br>chromium VI doesn't<br>stabilize; increases<br>weight and volume of<br>final product | Possible leaching of<br>exposed products which<br>may require secondary<br>containment measures | | | Stabilization | | Y | | | | Memo<br>indicated that<br>stabilization<br>was used | | On-Site Containment | | | | | | | | Closure-In-Place/On-Site<br>Encapsulation | | Y | | | | | ### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: PALMETTO WOOD PRESERVING (Dixiana, SC) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|---------------|----------------------------------------------------------------------------|--------------| | Long-Term On-Site Landfill | Off-Site<br>Excavation of<br>Contaminated<br>Areas with On-<br>Site Disposal | N | | | Not applicable due to limited off-site contamination | | | Physical Treatment | | | | | | | | Soil Washing | | Y | | | | | | Attenuation (mixing with clean soil) | | N | Contaminated area is too extensive for process | | Treatment would be necessary below the maximum effective depth of two feet | | | Off-Site Options | | | | | | | | Off-Site RCRA Facility | | Y | | | | | #### SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: PALMETTO WOOD PRESERVING (Dixiana, SC) PHASE III ANALYSIS Comments: Key contaminants include chromium and arsenic. Technologies were evaluated on the basis of technical, short-term/long-term environmental/public, and institutional considerations as well as cost. | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILITY | COST | |-------------------------------------------|-------------------|-----------------------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------------|-----------------------------|------------------------------|------------| | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | Capping | | | | | | | | | | Multi-Layer Cover System | N | Not entirely protective when used alone | | No reduction in toxicity or volume | Contaminated soil remains at the site | | | | | Fixation | | | | | | | | | | Stabilization | Y | | | | | | | | | On-Site Containment | | | | | | | | | | Closure-In-Place/On-Site<br>Encapsulation | N | | | No reduction in toxicity or volume | Contaminated soil remains at the site | | Intensive effort to excavate | | | Physical Treatment | | | | | | | | | | Soil Washing | Y | | | | | | | | | Off-Site Options | | | | | | | | | | Off-Site RCRA Facility | N | | | | Not a permanent solution | | Requires NCP analysis | High costs | ## SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE I/PHASE II ANALYSIS Comments: Note that dechlorination was selected only if necessary for K001 wastes and off-site incineration was not chosen as a primary treatment process; instead, it was selected for the low volume wastes from possible dechlorination treatment. | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------------------|----------------------------|---------------------------------------------|------|---------------|----------------------|----------------------------------| | | | | | | | | | Institutional Actions | | | | | | | | Restrictions | Land Use Ground-water | Y | | | | | | | Use | | | | | | | | Ground-water<br>Monitoring | | | | | | | Capping | | | | | | | | Unspecified | | Y | | | | Type of cap<br>was<br>undecided | | Fixation | | | | | | | | Solidification | | Y | | | | Primarily for arsenic | | Stabilization | | Y | | | | Primarily for arsenic | | On-Site Containment | | | | | | | | Temporary On-Site Storage Pile | | Y | | | | Prior to construction of the cap | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |----------------------------|-------------|---------------------------------------------|------|---------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------| | Long-Term On-Site Landfill | | Y | | | | Place treated<br>soil back in<br>the excavated<br>area from<br>which it was<br>removed | | Thermal Treatment | | | | | | | | On-Site Incineration | Rotary Kiln | Y | | | | | | Off-Site Incineration | | Y | | | | For low volume waste from dechlorination | | Vitrification | Plasma Arc | N | | Would not be effective in treating fine-grained soils | | | | Thermal Desorption | | Y | | | | | | Biological Treatment | | | | | | | | In Situ Bioremediation | | N | | Not capable of treating<br>carcinogenic PAHs to<br>the required cleanup<br>level at the present<br>time | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |------------------------|-----------------|---------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| | Ex Situ Bioremediation | | N | | Not capable of treating carcinogenic PAHs to the required cleanup level at the present time | | | | Soil/Slurry Bioreactor | | N | | | | | | Chemical Treatment | | | | | | | | Dechlorination | | Y | | | | If necessary | | Solvent Extraction | | Y | | | | | | Other | Steam Stripping | N | | The fine-grained, clay rich site soils cannot be treated effectively by steam stripping because of poor contact between steam and solid materials | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE I/PHASE II ANALYSIS (Continued) | TECHNOLOGY | FS NAME | TECHNOLOG<br>Y RETAINED<br>Phase I/Phase II | COST | EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COMMENT<br>S | |--------------------|---------|---------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| | Physical Treatment | | | | | | | | Soil Flushing | | N | | A solvent capable of<br>leaching both organics<br>and heavy metals from<br>the soil has not been<br>identified; low<br>permeability of soils<br>would make collection<br>of any added solvent<br>difficult | | | | Soil Washing | | N | | Not effective in<br>treating fine-grained<br>contaminated soils at<br>the site | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE III ANALYSIS | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COST | |--------------------------------|-------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------|----------------------|------------| | | | | | | | | | | | Institutional Actions | | | | | | | | | | Restrictions | Y | | | | | | | | | Capping | | | | | | | | | | Unspecified | Y | | | | | | | | | Fixation | | | | | | | | | | Solidification | Y | | | | | | | | | Stabilization | Y | | | | | | | | | On-Site Containment | | | | | | | | | | Temporary On-Site Storage Pile | Y | | | | | | | | | Long-Term On-Site Landfill | Y | | | | | | | | | Thermal Treatment | | | | | | | | | | On-Site Incineration | N | | | | | | | High costs | | Off-Site Incineration | Y | | | | | | | | | Thermal Desorption | Y | | | | | | | | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE III ANALYSIS (Continued) | TECHNOLOGIES EVALUATED | SELECTED<br>(Y/N) | OVERALL<br>PROTECTION | COMPLIANCE<br>WITH FEDERAL<br>ARARS | REDUCTION OF<br>TOXICITY,<br>MOBILITY, OR<br>VOLUME | LONG-TERM<br>EFFECTIVENESS | SHORT-TERM<br>EFFECTIVENESS | IMPLEMENTABILIT<br>Y | COST | |------------------------|-------------------|-----------------------|-------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------|--------------------------------------------------------------------------------|---------------| | Chemical Treatment | | | | | | | | | | Dechlorination | Y | | | | | | | | | Solvent Extraction | N | | | | | | Difficulties were encountered in previous attempts with this treatment process | High<br>costs | # SITE-SPECIFIC DATA COLLECTION FORM WOOD TREATER SITE NAME: RENTOKIL/VIRGINIA WOOD PRESERVING (Richmond, VA) PHASE III ANALYSIS (Continued) | Institutional Actions | | |-----------------------|----| | Institutional Actions | 52 | | Comments: | | | Comments: | 61 | | Comments: | 84 | | Comments: | 87 |